FSI simulation of flexible tandem insect wings in counter stroke

نویسنده

  • Y. H. CHEN
چکیده

Bionic micro-air vehicles (MAV) having the maneuverability of dragonflies would be capable of fast forward flight, hovering and even backward flight. In order to achieve desirable designs for high performing MAVs, it is essential to understand the aerodynamics and structures of the insect wings and more importantly, the interactions between the operating flows and flexible structural wings. Here, we present a fluid-structure interaction model which integrates the realistic structural flexibility of the dragonfly wings with the actual counter-stroke flapping trajectories. Hence, we are able to study the aero-elastic deformation and aerodynamic forces acting on the flapping wings, in the hope that future MAV designs would perform closer to the agile natural fliers. Verification of the simulation framework is performed by a number of rigorous tests with comparison to past experiments and simulations. Key-Words: dragonfly wings, flapping flight, tandem wings, counter stroke, CFD, CSM, FSI

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance

We use fully-coupled three-dimensional computer simulations to examine aerodynamics of elastic wings oscillating at resonance. Wings are modeled as planar elastic plates plunging sinusoidally at a low Reynolds number. The wings are tilted from horizontal, thereby generating asymmetric flow patterns and non-zero net aerodynamic forces. Our simulations reveal that resonance oscillations of elasti...

متن کامل

Passive Wing Rotation in Flexible Flapping Wing Aerodynamics

Insect wings are flexible. For rigid wings lift enhancing unsteady aerodynamics mechanisms, such as delayed stall via leading-edge vortices (LEVs), wake-capture, and rotational forces, characterize the lift generation of a hovering insect. We have uncovered a novel mechanism that fruit fly size insects can utilize to further increase the lift by adjusting its wing shape passively: A pair of a L...

متن کامل

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction ba...

متن کامل

Resonance of flexible flapping wings at low Reynolds number.

Using three-dimensional computer simulations, we examine hovering aerodynamics of flexible planar wings oscillating at resonance. We model flexible wings as tilted elastic plates whose sinusoidal plunging motion is imposed at the plate root. Our simulations reveal that large-amplitude resonance oscillations of elastic wings drastically enhance aerodynamic lift and efficiency of low-Reynolds-num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017